Microsoft data mining : (Record no. 2328)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 03995cam a22003134a 4500 |
001 - CONTROL NUMBER | |
control field | 12194515 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20221012161319.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 001003s2000 maua 001 0 eng |
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER | |
LC control number | 00047514 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 1555582427 (pbk. : alk. paper) |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | DLC |
Transcribing agency | DLC |
Modifying agency | DLC |
042 ## - AUTHENTICATION CODE | |
Authentication code | pcc |
050 00 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | QA76.9.D343 |
Item number | D43 2001 |
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 006.3 |
Edition number | 21 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | De Ville, Barry. |
245 10 - TITLE STATEMENT | |
Title | Microsoft data mining : |
Remainder of title | integrated business intelligence for e-Commerce and knowledge management / |
Statement of responsibility, etc. | Barry de Ville. |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Place of publication, distribution, etc. | Boston : |
Name of publisher, distributor, etc. | Digital Press, |
Date of publication, distribution, etc. | c2001. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | xx, 315 : |
Other physical details | ill. ; |
Dimensions | 24 cm. |
500 ## - GENERAL NOTE | |
General note | Includes index. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Machine generated contents note: -- I Introduction to Data Mining -- I.I Something old, something new -- 1.2 Microsoft's approach to developing the right set of tools -- 1.3 Benefits of data mining -- 1.4 Microsoft's entry into data mining -- 1.5 Concept of operations -- 2 The Data Mining Process -- 2.1 Best practices in knowledge discovery in databases -- 2.2 The scientific method and the paradigms that come with it -- 2.3 How to develop your paradigm -- 2.4 The data mining process methodology -- 2.5 Business understanding -- 2.6 Data understanding -- 2.7 Data preparation -- 2.8 Modeling -- 2.9 Evaluation -- 2.10 Deployment -- 2.11 Performance measurement -- 2.12 Collaborative data mining: the confluence of data mining -- and knowledge management -- 3 Data Mining Tools and Techniques -- 3.1 Microsoft's entry into data mining -- 3.2 The Microsoft data mining perspective -- 3.3 Data mining and exploration (DMX) projects -- 3.4 OLE DB for data mining architecture -- 3.5 The Microsoft data warehousing framework and allian( -- 3.6 Data mining tasks supported by SQL Server 2000 -- Analysis Services -- 3.7 Other elements of the Microsoft data mining strategy -- 4 Managing the Data Mining Project -- 4.1 The mining mart -- 4.2 Unit of analysis -- 4.3 Defining the level of aggregation -- 4.4 Defining metadata -- 4.5 Calculations -- 4.6 Standardized values -- 4.7 Transformations for discrete values -- 4.8 Aggregates -- 4.9 Enrichments -- 4.10 Example process (target marketing) -- 4.11 The data mart -- 5 Modeling Data -- S. I The database -- 5.2 Problem scenario -- 5.3 Setting up analysis services -- 5.4 Defining the OLAP cube -- 5.5 Adding to the dimensional representation -- 5.6 Building the analysis view for data mining -- 5.7 Setting up the data mining analysis -- 5.8 Predictive modeling (classification) tasks -- 5.9 Creating the mining model -- 5.10 The tree navigator -- 5.1 I Clustering (creating segments) with clusteranalysis -- 5.12 Confirming the model through validation -- 5.13 Summary -- 6 Deploying the Results -- 6.1 Deployments for predictive tasks (classification) -- 6.2 Lift charts -- 6.3 Backing up and restoring databases -- 7 The Discovery and Delivery of Knowledge for Effective -- Enterprise Outcomes: Knowledge Management -- 7.1 The role of implicit and explicit knowledge -- 7.2 A primer on knowledge management -- 7.3 The Microsoft technology-enabling framework -- 7.4 Summary -- Appendix A: Glossary -- Appendix B: References -- Appendix C: Web Sites -- Appendix D: Data Mining and Knowledge Discovery -- Data Sets in the Public Domain -- Appendix E: Microsoft Solution Providers -- Appendix F: Summary of Knowledge Management -- Case Studies and Web Locations -- Index. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Data mining. |
630 00 - SUBJECT ADDED ENTRY--UNIFORM TITLE | |
Uniform title | OLE (Computer file) |
630 00 - SUBJECT ADDED ENTRY--UNIFORM TITLE | |
Uniform title | SQL server. |
856 42 - ELECTRONIC LOCATION AND ACCESS | |
Materials specified | Publisher description |
Uniform Resource Identifier | <a href="http://www.loc.gov/catdir/description/els031/00047514.html">http://www.loc.gov/catdir/description/els031/00047514.html</a> |
856 4# - ELECTRONIC LOCATION AND ACCESS | |
Materials specified | Table of Contents |
Uniform Resource Identifier | <a href="http://www.loc.gov/catdir/toc/fy02/00047514.html">http://www.loc.gov/catdir/toc/fy02/00047514.html</a> |
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN) | |
a | 7 |
b | cbc |
c | orignew |
d | 1 |
e | ocip |
f | 20 |
g | y-gencatlg |
925 0# - | |
-- | acquire |
-- | 2 shelf copies |
-- | policy default |
955 ## - COPY-LEVEL INFORMATION (RLIN) | |
-- | yg05 2001-08-09 CIP ver.; |
-- | yg05 2001-08-09 to BCCD |
No items available.